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Probability density functions �PDFs� of scale-dependent energy fluctuations, P��E����, are studied in high-
resolution direct numerical simulations of Navier-Stokes and incompressible magnetohydrodynamic �MHD�
turbulence. MHD flows with and without a strong mean magnetic field are considered. For all three systems it
is found that the PDFs of inertial range energy fluctuations exhibit self-similarity and monoscaling in agree-
ment with recent solar-wind measurements �Hnat et al., Geophys. Res. Lett. 29, 86 �2002��. Furthermore, the
energy PDFs exhibit similarity over all scales of the turbulent system showing no substantial qualitative change
of shape as the scale of the fluctuations varies. This is in contrast to the well-known behavior of PDFs of
turbulent velocity fluctuations. In all three cases under consideration the P��E���� resemble Lévy-type gamma
distributions ��−1 exp�−��E� /����E�−� The observed gamma distributions exhibit a scale-dependent width
���� and a system-dependent �. The monoscaling property reflects the inertial-range scaling of the Elsässer-
field fluctuations due to lacking Galilei invariance of �E. The appearance of Lévy distributions is made
plausible by a simple model of energy transfer.
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Turbulence in electrically conducting magnetofluids is,
apart from its importance for laboratory plasmas �see, for
example �1��, a key ingredient in the dynamics of, e.g., the
Earth’s liquid core and the solar wind �see, e.g., �2��. A
simple description of such plasmas is the framework of in-
compressible magnetohydrodynamics �MHD�, a fluid ap-
proximation neglecting kinetic processes occurring on mi-
croscopic scales. This approach is appropriate if the main
interest is focused on the nonlinear dynamics and the inher-
ent statistical properties of fluid turbulence. To this end, two-
point increments of a turbulent field component, say f , in the
direction of a fixed unit vector ê, �f���= f�r+ ê��− f�r� are
analyzed, since they yield a comprehensive and scale-
dependent characterization of the statistical properties of tur-
bulent fluctuations via the associated probability density
function �PDF� �3�.

PDFs of temporal fluctuations �16� in the solar wind, e.g.,
of total �magnetic+kinetic� energy density, as measured by
the WIND spacecraft are self-similar over all observed
scales, exhibit monoscaling, and closely resemble gamma
distributions. In contrast the PDFs of velocity and magnetic
field are found to display well-known multifractal character-
istics, i.e., the associated PDFs change from Gaussian at
large scales to leptocurtic �fat-tailed� at small scales �4–6�.
The solar wind plasma is a complex and inhomogeneous
mixture of mutually interacting regions with different physi-
cal characteristics and dynamically important kinetic pro-
cesses �7,8�. Thus it is not clear if the above-mentioned
solar-wind observations are caused by turbulence or some
other physical phenomenon. This paper reports an investiga-
tion of turbulent PDFs based on high-resolution direct nu-
merical simulations of physically “simpler” homogeneous

incompressible MHD and Navier-Stokes turbulence to eluci-
date this question. Monoscaling of the two-point PDFs of
energy is found in the inertial range of macroscopically iso-
tropic MHD turbulence, anisotropic MHD turbulence with
an imposed mean magnetic field, as well as in turbulent
Navier-Stokes flow. The respective PDFs resemble leptocur-
tic gamma laws on all spatial scales in agreement with the
solar-wind measurements. The monoscaling property is
shown to be a consequence of lacking Galilei invariance of
the energy fluctuations in combination with turbulent
inertial-range scaling. The appearance of Lévy-type gamma
distributions apparently results from nonlinear turbulent
transfer as suggested by similar findings in all three investi-
gated systems and a simple reaction-rate model.

The dimensionless equations of incompressible MHD,
formulated in Elsässer variables z�=v�b with the fluid ve-
locity v and the magnetic field b which is given in Alfvén-
speed units �9�, read

� · z� = 0, �1�

�tz
� = − z� · �z� − �P + �+�z� + �−�z�, �2�

with the total pressure P= p+ 1
2b2. The dimensionless kine-

matic viscosity � and magnetic diffusivity � appear in
��=1 /2�����.

The data used in this work stems from pseudospectral
high-resolution direct numerical simulations �10� based on a
set of equations equivalent to Eqs. �1� and �2�. It describes
homogeneous fully developed turbulent MHD and Navier-
Stokes �b�0� flows in a cubic box of linear size 2� with
periodic boundary conditions. The initial conditions for the
decaying simulation run consist of random fluctuations with
total energy equal to unity. In the MHD cases total kinetic
and magnetic energy are approximately equal. The initial
spectral energy distribution is peaked at small wavenumbers*wolf.mueller@ipp.mpg.de
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around k=4 and decreases like a Gaussian toward small
scales. In the MHD setups magnetic and cross helicity are
small implying z+�z−. The driven turbulence simulations
were run toward quasistationary states whose energetic and
helicity characteristics as mentioned above are roughly equal
to the decaying run. The MHD magnetic Prandtl number
Prm=� /� is unity. The Reynolds numbers of all configura-
tions are of order 103.

Three cases are considered. Setup �a� represents decaying
macroscopically isotropic three-dimensional �3D� MHD tur-
bulence. The data set contains nine states of fully developed
turbulence each comprising 10243 Fourier modes. The
samples are taken equidistantly in time over a period of
about three large eddy turnover times. The angle-integrated
energy spectrum of this system exhibits a Kolmogorov-like
scaling law �11� in the inertial range, i.e., Ek�k−5/3. The
second data set �b� contains simulation data of a driven qua-
sistationary macroscopically anisotropic MHD flow with a
strong constant mean magnetic field. The driving is accom-
plished by freezing the largest Fourier modes of the system
�k	2�. The data comprises 10242 Fourier modes perpen-
dicular to the direction of the mean field and 256 modes
parallel to it. This data set covers about two large eddy turn-
over times of quasistationary turbulence with eight samples
taken equidistantly over that period. The perpendicular en-
ergy spectrum shows Iroshnikov-Kraichnan-like behavior
Ek�

�k�
−3/2 �12,13�. Note that this is neither claim nor clear

evidence for the validity of the Iroshnikov-Kraichnan picture
in this configuration. For further details of the simulations
and additional references see �10�. The third simulation �c�
represents a turbulent statistically isotropic Navier-Stokes
flow with resolution 10243 which is kept stationary by the
same driving method as in case �b� and exhibits
Kolmogorov-scaling Ek�k−5/3 of the turbulent energy spec-
trum.

For all turbulent systems the statistical properties of �f���
which is computed over varying scale � are investigated. In
the present work f stands for the component of z+ in the
increment direction ê or the fluctuation energy defined here
as E��z+�2. For the macroscopically isotropic setups �a� and
�c� ê= êz. In case �b� the unit vector points in a fixed arbitrary
direction perpendicular to the mean magnetic field. Under
the assumption of statistical isotropy the statistical properties
of �f��� depend solely on �. This is the case for setup �a�,
�c�, and for system �b� in planes perpendicular to the mean
magnetic field. The assumption also holds approximately for
�E if contributions by eddies on larger scales which are con-
volved into this non-Galileian-invariant quantity can be re-
garded as quasiconstant on scale � �see below�. The quantity
	�f���
 scales self-similarly with the scaling parameter 

�
�0�, if 	�f����
=�
	f���
 for every �. For the associated
cumulative probability distribution follows ���f���	�
=���−
�f����	� for any real . This implies for the prob-
ability density P

P��f���� = �−
Ps��−
�fs� �3�

introducing the master PDF Ps with �fs=�f����. According
to Eq. �3�, there is a family of PDFs that can be collapsed to
a single curve Ps, if 
 is independent of �. This is known as

monoscaling in contrast to multifractal scaling observed,
e.g., for two-point increments of a turbulent velocity field.

To test if the above-mentioned observations in the solar
wind are a phenomenon related to inherent properties of tur-
bulence time- and space-averaged increment series �z+���
and �E��� for different �, ranging between � /512 up to �,
are computed. In system �a� the increments are normalized
using �ET�1/2 with ET=1 /4�VdV��z+�2+ �z−�2� to compensate
for the decaying amplitude of the turbulent fluctuations. The
PDFs are generated as normalized histograms of the respec-
tive increments taken over all positions in the 2�-periodic
box which contains the real space fields, v�r� and b�r�, com-
puted from the available Fourier coefficients. Figure 1 shows
P��E���� for various � in the isotropic case �a�. The non-
Gaussian nature of the PDFs over all scales is evident. Simi-
lar behavior is found in the anisotropic case �b� where the
increments are taken perpendicularly to the direction of the
mean field as well as in the Navier-Stokes simulation �c�.
The PDFs are highly symmetric and become increasingly
broader with growing � reflecting the increase of turbulent
energy toward the largest scales. Interestingly, the PDFs at
all scales have the same leptokurtic shape resembling Lévy
laws. In particular, away from the center, �E=0, the PDFs
are close to gamma distributions �exp�−��E� /����E�−� of
different widths �. The exponent � of the best fits is constant
in the inertial range and amounts approximately to 3.4 �a�,
4.2 �b�, and 3.1 �c�. In the solar wind a similar finding, how-
ever, with ��2.5 was reported �4�.

The similarity of the P��E���� on different scales �
suggests the possibility of monoscaling. The monoscaling
exponent is expected to be scale-independent in the inertial
range only since the energy increments are not Galilei
invariant. Therefore small-scale �E also comprise contribu-
tions by larger eddies which advect the small-scale
fluctuations. A linearization of �E with respect to the largest-
scale contribution �z0

+�2� ��z+�2 yields to lowest order �E
��z0

++�z+�2�z0
+�z+. As a consequence, the energy incre-

ments reflect the inertial-range scaling of the turbulent
Elsässer fields, i.e., �E��z+��
. To apply the rescaling
procedure given by Eq. �3� �cf. also �4�� the exponent 
 is
extracted from the PDFs by two independent techniques.

First, the standard deviation is considered which is de-
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FIG. 1. The PDFs of total energy fluctuations �E on five differ-
ent scales �=� /n with n=511 �solid�, n=130 �dotted�, n=46
�dashed�, n=4 �dot-dashed�, and n=1 �three-dot-dashed�.
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fined as ����= �	�E���2
�1/2. In the inertial range � exhibits
power-law behavior with respect to the increment distance,
������
, Fig. 2 shows the standard deviation of total energy
fluctuations in the inertial range for the isotropic case �a� in
double logarithmic presentation. A linear least-squares fit is
carried out to obtain 
. The characteristic exponents deduced
in this way are 
=0.29�0.025 for the isotropic case �a�,

=0.23�0.025 for the anisotropic case �b�, and

=0.28�0.03 for the Navier-Stokes flow �c�. As expected
these values are close to the nonintermittent scaling expo-
nents observed for the turbulent field fluctuations, i.e.,

K41=1 /3 for cases �a� and �c� while 
IK=1 /4 for case �b�.

Second, in the inertial range the characteristic exponents
can be obtained via the amplitude of P�0,����−
 profiting
from the fact that the peaks of the PDFs are statistically the
least noisy part of the distributions. The scaling exponent
obtained by using this method is in good agreement with the
value of 
 obtained via the PDF variance. Figure 3 shows the
rescaled PDFs according to Eq. �3� for the MHD case �a�
�similar for �b�, not shown� while Fig. 4 displays the rescaled
PDFs obtained from the Navier-Stokes simulation �c�. The

corresponding increment distances � are all lying in the re-
spective inertial range. Evidently the PDFs are self-similar
and collapse for up to 20� with weak scattering on the mas-
ter PDF, Ps, when using the characteristic exponents given
above. The dashed lines in both figures display the best fit-
ting gamma laws.

The PDFs of the Elsässer field fluctuations, P��z+����, in
system �a� �systems �b� and �c� likewise� display a different
and well-known behavior as can be seen from Fig. 5. The
distributions lose their small-scale leptocurtic character as �
increases. Due to the lacking correlation of distant turbulent
fluctuations the associated distributions become approxi-
mately Gaussian at large scales. Because of the resulting
multifractal scaling of the PDFs which is a signature of the
intermittent small-scale structure of turbulence it is obvious
that they cannot be collapsed onto a single curve even in the
inertial range. However, one can infer the nonintermittent
characteristic scaling exponent by regarding the function
P�0,�� �not shown�. For example, in system �a� this function
exhibits clear inertial-range scaling ��−a with
a=0.33�1.5�10−2 in very good agreement with 
K41.

The occurrence of gamma PDFs is made plausible by a
simple reaction-rate ansatz �14,15�: Consider the “intensity”
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FIG. 2. Standard deviation of total energy increments within the
inertial range in case �a� �triangles� with linear least-squares fit
�solid line�.
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FIG. 3. Rescaled PDFs of total energy fluctuations in the
inertial range of the isotropic case �a�. The gamma law
10−3 exp�−��E� /0.35���E�−3.1 is represented by the dashed curve.
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FIG. 4. Rescaled PDFs of total energy fluctuations in the
inertial range of the Navier-Stokes case �c�. The gamma law
10−3 exp�−��E� /0.4���E�−3.4 is represented by the dashed curve.
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FIG. 5. The PDFs of Elsässer field fluctuations �z+ for the same
five different scales as in Fig. 1.
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n�e� of turbulent fluctuations with energy e= ��E� such that
n�e� is the fraction of the total turbulent energy associated
with these fluctuations and the larger eddies in which they
are embedded. The evolution of this function is assumed to
obey the following linear rate equation:

�tn�e� = − n�e�/�−�e� + 
e

�

de�n�e��/�+�e�,e� , �4�

where �+�e� ,e� is the time characteristic of the creation of
fluctuations with energy e as a result of turbulent transfer
from fluctuations with energy e� while �−�e� is the respective
characteristic decay time. Normalization of n�e� by
�0

�de�n�e�� yields the corresponding PDF P�e�. In a statisti-
cally stationary state Eq. �4� then gives

P�e� = C1
e

�

de�P�e��
�−�e�

�+�e�,e�
, �5�

where C1 is a normalization constant. For �−�e� /�+�e� ,e�
��e� /e�� this integral equation has the solution P�e�
=C2e−� exp�−e /��. Thus the model �4� which mimics in
combination with the above-mentioned assumptions a direct

spectral transfer process yields the observed gamma distribu-
tions. Note that the lower bound of the integral in Eq. �5�
implies that energy flows from higher to lower levels where
for technical simplicity very large differences between e and
e� are allowed. A finite upper bound of the integral in Eq. �5�
does, however, not change the result fundamentally. This
suggests that the observed gamma distributions are an indi-
cation of turbulent spectral transfer.

In summary it has been shown by high-resolution direct
numerical simulations of incompressible turbulent magneto-
hydrodynamic and Navier-Stokes flows that the monoscaling
of energy fluctutation PDFs observed in the solar wind is the
consequence of lacking Galilei invariance of energy incre-
ments in combination with self-similar scaling of the under-
lying turbulent fields. The closeness of the PDFs to Lévy-
type gamma distributions is made plausible by a simple
model mimicking nonlinear spectral transfer.
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